Ikon som visar att sidan läses in

Matematik

KursplanKunskapskrav

Kursplan för ämnet Matematik

Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk verksamhet är till sin art en kreativ, reflekterande och problemlösande aktivitet som är nära kopplad till den samhälleliga, sociala och tekniska utvecklingen. Kunskaper i matematik ger människor förutsättningar att fatta välgrundade beslut i vardagslivets många valsituationer och ökar möjligheterna att delta i samhällets beslutsprocesser.

Ämnets syfte

Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att

  • formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
  • använda och analysera matematiska begrepp och samband mellan begrepp,
  • välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
  • föra och följa matematiska resonemang, och
  • använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.

Centralt innehåll för årkurs 4-6

Taluppfattning och tals användning

  • Rationella tal och deras egenskaper.
  • Positionssystemet för tal i decimalform. Det binära talsystemet och talsystem som använts i några kulturer genom historien, till exempel den babyloniska.
  • Tal i bråk- och decimalform och deras användning i vardagliga situationer.
  • Tal i procentform och deras samband med tal i bråk- och decimalform.
  • Centrala metoder för beräkningar med naturliga tal och enkla tal i decimalform vid överslagsräkning, huvudräkning samt vid beräkningar med skriftliga metoder och miniräknare. Metodernas användning i olika situationer.
  • Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga situationer.
     

Algebra

  • Obekanta tal och deras egenskaper samt situationer där det finns behov av att beteckna ett obekant tal med en symbol.
  • Enkla algebraiska uttryck och ekvationer i situationer som är relevanta för eleven.
  • Metoder för enkel ekvationslösning.
  • Hur mönster i talföljder och geometriska mönster kan konstrueras, beskrivas och
  • uttryckas.

Geometri

  • Grundläggande geometriska objekt däribland polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock samt deras inbördes relationer. Grundläggande geometriska egenskaper hos dessa objekt.
  • Konstruktion av geometriska objekt. Skala och dess användning i vardagliga situationer.
  • Symmetri i vardagen, i konsten och i naturen samt hur symmetri kan konstrueras.
  • Metoder för hur omkrets och area hos olika tvådimensionella geometriska figurer kan bestämmas och uppskattas.
  • Jämförelse, uppskattning och mätning av längd, area, volym, massa, tid och vinkel med vanliga måttenheter. Mätningar med användning av nutida och äldre metoder.
     

Sannolikhet och statistik

  • Sannolikhet, chans och risk grundat på observationer, experiment eller statistiskt material från vardagliga situationer. Jämförelser av sannolikheten vid olika slumpmässiga försök.
  • Enkel kombinatorik i konkreta situationer.
  • Tabeller och diagram för att beskriva resultat från undersökningar. Tolkning av data i tabeller och diagram.
  • Lägesmåtten medelvärde, typvärde och median samt hur de kan användas i statistiska undersökningar.

Samband och förändring

  • Proportionalitet och procent samt deras samband.
  • Grafer för att uttrycka olika typer av proportionella samband vid enkla undersökningar.
  • Koordinatsystem och strategier för gradering av koordinataxlar.
     

Problemlösning

  • Strategier för matematisk problemlösning i vardagliga situationer.
  • Matematisk formulering av frågeställningar utifrån vardagliga situationer.
Lindgårdsskolans skolexpedition     Adress: Kyrkvägen 7 (Box 2012) 737 02 Fagersta     Telefon: 0223-434 49